
February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 1

Corona™ SDK
Applications Programming Guide

Ansca Inc.
© 2009 Ansca Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Ansca Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Ansca’s copyright
notice.

The Ansca logo is a trademark of Ansca Inc.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Ansca retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications using Ansca software.
Every effort has been made to ensure that the
information in this document is accurate. Ansca
is not responsible for typographical errors.

Even though Ansca has reviewed this document,
ANSCA MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL ANSCA BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Ansca
dealer, agent, or employee is authorized to make
any modi"cation, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you speci"c legal rights, and you may also have
other rights which vary from state to state.

Lua 5.1 Copyright © 1994-2008 Lua.org, PUC-Rio.

iPhone™, App Store™ and Mac OS® are trademarks of Apple, Inc.

OpenGL® ES is a trademark of Khronos Group.

Photoshop® and Illustrator® are registered trademarks of Adobe, Inc.

Ansca™, Corona™ and Corona SDK™ are trademark of Ansca, Inc.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 2

Contents

Preface 8

Limitations 8

See Also 8

Tutorial Introduction 9

Hello World 9

Simulator vs Terminal 10

Hello World on the Simulator 10

Rapid Prototyping 11

Basic Interactivity 12

Animation and Sound 13

Projects 14

Assets (Building Blocks) 14

Starting a Project 14

Building for Device 15

Sample Code 16

Application Environment 18

Life Cycle 18

Global Runtime Object 18

Sandbox 18

Application Events 18

Termination 18

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 3

Interruptions 19

Customization 19

Application Icon 19

Launch Image 19

Event Handling 20

Global Events 20

Local Events 20

Hit Events 20

Propagation and Handling of Events 20

Overriding Propagation with Focus 21

Listeners and Event Delivery 21

Registering for Events 22

Conventions 22

Graphics and Drawing 23

Creating Display Objects 23

Painter’s Model 23

Display Hierarchy 23

Group Objects 23

Stage Objects 24

Moving Objects Forward and Backward 24

Drawing Cycle 25

Screen Updates 25

Coordinates and Transforms 25

Coordinates 25

Changing Position of Objects 26

Transforms 26

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 4

Object References 27

Removing Objects Properly 27

Variable References 28

Common Pitfalls 29

Animation 31

Basic Animations 31

Animated Sprites (or “Movieclips”) 32

Custom/Programmatic Animations 32

Frame Rate 33

Time-based vs Frame-based 33

Lost or Missing Time 34

User Interface 36

Buttons 36

Alerts 36

Text Input 36

Files 37

Getting Paths to Files 37

Reading Files 37

Writing Files 38

Beware Security Violations 38

Networking 39

Downloading Files 39

Uploading Files 39

Multimedia 40

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 5

Playing Sound 40

Event Sound 40

Longer Sounds 40

Playing Video 40

Device Support 42

Orientation 42

Camera 42

Common Design Tasks 43

Strategies to Avoid Globals 43

Overcoming Scoping Issues of Locals 43

Keeping Everything Local in Listeners 43

Pausing and Restarting Animations 43

Managing Screens 43

Saving Data on Application Exit 44

Restoring Data on Application Launch 44

Performance and Optimization 46

Using Memory Efficiently 46

Example 46

Reducing Power Consumption 47

Network 48

CPU 48

Graphics 48

Group objects 48

Turn off animations for non-visible objects 48

Optimize image sizes 49

Minimize setup code at startup time 49

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 6

Lua: Best Practices 49

Use locals (i.e. avoid global variables) 49

Math: fast vs slow 50

Inserting objects into arrays 50

Constant Folding 50

Cache properties in a local variable 50

Tuning Your Code 51

Revision History 52

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 7

Preface

Ansca™ Corona™ will fundamentally change how you approach iPhone™ software
development whether you're an engineer, a web developer, or a designer.

The Corona SDK™ allows you to create native apps for the iPhone. These apps look and behave
as normal applications natively built for a device. You get full access to device-speci"c features
such as the camera or accelerometer. Your application will automatically leverage the
performance bene"ts of being a native executable, especially hardware-accelerated sound
and graphics.

The process is simple:

• Design images, audio, video, and animation assets using your favorite creative tool.

• Rapidly develop your iPhone apps using the Corona SDK taking full advantage of the device
including accelerometer, touch screen, OpenGL®ES, and more.

• Build native optimized apps and distribute them on the iPhone App Store™.

As a developer, you will program in Lua, a simple and intuitive scripting language with
exceptional performance, and leverage Corona's innovative and robust APIs.

This document will discuss how to use Corona's APIs to maximize your productivity.

Limitations

Currently, the tools only work on Mac OS® X 10.5.6 or later. Also, an Intel Mac is required to
create iPhone device builds, due to Apple’s code-signing requirements.

See Also

• Corona SDK Language and API Reference provides reference information for all functionality
offered by Corona.

• A highly recommended detailed and authoritative introduction to all aspects of Lua
programming by Lua’s chief architect: Programming in Lua (2nd edition), by Roberto
Ierusalimschy

• For an official de"nition of the language, consult Lua 5.1 Reference Manual, by R.
Ierusalimschy, L. H. de Figueiredo, W. Celes. Also available online at http://www.lua.org/
manual/5.1/

• Additional documentation is available at http://www.lua.org/docs.html

• A live, interactive demo of Lua is available at http://www.lua.org/demo.html. This is an
excellent place to see some simple sample programs and to play with your own.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 8

http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://www.lua.org
http://www.lua.org
http://www.lua.org/demo.html
http://www.lua.org/demo.html

Tutorial Introduction

Let’s start with a quick introduction to the Corona SDK. We’ll focus just on the essentials
without getting stuck in the details. We’re not trying to be complete or precise. Rather, we
want to get you as quickly as possible to the point where you can start creating cool, useful, or
engaging apps.

We’ll talk about some basics like variables and functions as well as incorporate animation and
interactivity so you get a sense of what’s possible. Keep in mind this is just a tutorial, so you
won’t "nd a complete explanation of any one feature.

Our aim is to address multiple audiences. Experienced programmers should be able to
extrapolate the information in this chapter for their own needs. Beginners can use this as a
springboard for writing their own small, simple apps.

Hello World

The best (only) way to learn how to use the Corona SDK is by writing an app. To do that we
write programs in a language called Lua. In keeping with tradition, let’s write a some Lua code
that prints “Hello World”.

The big roadblock, here, is "guring out the details of how to actually use the Corona SDK to do
this. Once you’ve got these details mastered, everything gets a lot easier.

So let’s get started! What you’ll need is a text editor to write your program in. Later, you’ll save
that "le to a folder so that the Corona Simulator can run and show you the results.

In the text editor, type the following:

print("Hello World")

Then save it to a "le called main.lua in some folder that’s easy to locate. Generally, every
program should have its own folder on your system.

To run the program, you need
to launch the Corona
Simulator. All Corona SDK "les
should be in the Corona folder
in your Applications folder (see
“Getting Started Guide” for
more information on how to
install the Corona SDK.) The
contents of the SDK will look
something like the picture at
right.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 9

Double-click on the icon for Corona Terminal (the circled icon at right).

This will launch a Terminal window and bring up a "le dialog. In the dialog, navigate to the
folder containing your main.lua "le and click the Open button.

At this point, you will see “Hello World” in the Terminal window:

You will also see a blank simulator window (right) that simulates what
would display on the actual phone. In this case, the phone screen
remains blank because we’re told the program to output to the
Terminal.

Let’s explain how this program worked. The app launches from the "le
called main.lua. The simulator loads this "le and follows the
instructions contained inside. Generally, an app consists of statements
and variables. Statements provide instructions on what operations and
computations need to be done; variables store the values of these
computations.

In this program, we use a function called print. A function is just a
collection of statements that perform some task. You send inputs into
the function called parameters (or arguments). Some functions return
results. In the case of print, all it does is output the arguments as
strings to the Terminal.

Simulator vs Terminal

So why did “Hello World” only display in the Terminal window and not in the simulator?
That’s because print is designed to output messages to the Terminal. Its purpose is to output
you to send diagnostic messages about what’s happening in your program. And in general,
the Terminal window gives you the ability to see warning/error messages that the simulator
generates or print your own messages.

Hello World on the Simulator

To get things displaying on the simulator screen, we need to use different functions that come
from Corona’s graphics library. A library is a collection of functions that provides useful, but

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 10

related functionality. To show “Hello World” in the simulator, you need to add the following
two lines:

local textObject = display.newText("Hello World!", 50, 50, nil, 24)
textObject:setTextColor(255,255,255)

Let’s explain what’s happening. newText is a function of the
display library that returns an object that will represent the
text on the screen.

Library functions deserve some more explanation. In this
example, you can think of newText as belonging to the
display library. This relationship is known as a property
relationship. So to access the newText property of display, you
have to use a dot. Hence, you write “display.newText” but not
“newText” by itself.

The function setTextColor is a special method called an object
method. It uses a special colon syntax that means it is related to
the text object you created. Typically these methods modify the
variable before the colon (i.e. textObject). In this case, the text
object has no color by default, so we need to assign the Red,
Green, and Blue color channels. These numbers range from
0-255. So for white, we need 255 for each channel.

Rapid Prototyping

One of the most powerful things about the Corona SDK is the ability to make quick changes
and see those changes instantly.

Let’s revisit our previous example to see how this works. You can also start with the
“HelloWorld” project in the Sample Code. Launch the simulator, navigate to the folder for your
program, and click open as you did before.

Now, open up the main.lua "le in your text editor and try changing the 3 arguments to
setTextColor. For example, you might have done something like:

local textObject = display.newText("Hello World!", 50, 50, nil, 24)
textObject:setTextColor(255, 0, 0)

Now, save the "le and then go back to the simulator. Under the File menu, click the Relaunch
submenu item (File –> Relaunch) — or use the keyboard shortcut ⌘R (command-R) in the
simulator. This reloads your main.lua "le without having to restart the simulator. Notice how
the color of the text changes immediately. In the version above, the text would appear red.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 11

As you develop your application, you’ll "nd yourself doing this sort of thing very often. You’ll
load your app in the simulator, make some edits to your main.lua "le in text editor, switch
back to the simulator and relaunch your code to see the results. This makes it really easy to
make edits and see the results, all while avoiding the time and trouble of quitting and
restarting the simulator.

Basic Interactivity

Let’s add some interactivity by creating a button that will change the color of the text
randomly.

Starting with the “HelloWorld” project in the Sample Code, add the following lines at the end
of main.lua to load an image:

local button = display.newImage("button.png")
button.x = display.stageWidth / 2
button.y = display.stageHeight - 50

This loads an image called button.png and positions it at the bottom center of the screen. It
uses another display library function (display.newImage). This function returns an image
object that we store in the variable button. We could have called the variable anything, but
the name button seemed natural since we are going to turn this image into a button.

The image object that we created has built-in properties that we can modify. These include the
x,y positions on the screen which refer to the position of the center of the image relative to the
top-left corner of the screen.

To get a position towards the bottom of the screen, we took advantage of the display
properties of the screen display.stageWidth and display.stageHeight to help us
center the position of the image.

To turn the image into an actual button, we need to make it respond to events. There are
various kinds of events. For this example, we will make the image respond to “tap” events
(which are similar to single mouse clicks on a desktop computer). When you add the following
lines at the end of main.lua, you can click on the image and the text color changes.

function button:tap(event)
	 local r = math.random(0, 255)
	 local g = math.random(0, 255)
	 local b = math.random(0, 255)

	 textObject:setTextColor(r, g, b)
end

button:addEventListener("tap", button)

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 12

Let’s see how this works. The code above is two parts. The "rst part de"nes an object listener for
the image object button. An object listener (usually called a table listener) is an object
method whose name matches the name of the event. Object listeners are just another name
for object methods where a speci"c convention is followed: the name of the method is the
same as the name of the event we are interested in, so in this case, we call the method tap.
The colon is present because that’s the syntax for de"ning object methods.

The second part is where we register this object listener to receive “tap” events. Fortunately,
the image object button (like all objects created by the display library) has a built-in object
method called addEventListener that allows us to make it interactive. Because it’s an object
method, the image object variable button is to the left of the colon and the object method
addEventListener is to the right. The "rst argument is the name of the event and the
second argument is the image object itself.

When the user taps on the image, the system sees that an object listener has been registered.
It looks for an object method named tap inside that object and then calls that method. In our
implementation of the tap object method, we generate 3 random numbers between 0 and
255 and use those to set the new text color.

The "nal code for this is available in the “HelloWorld2” Sample Code.

Animation and Sound

Let’s animate the text and add some sound every time the user taps the button.

Start with the “HelloWorld2” project in the Sample Code and add the following lines at the end
of main.lua so that the text will move vertically down by 100 pixels:

transition.to(textObject, { time=1000, y=textObject.y+100 })

Here, we are using the transition library which does a lot of the heavy lifting on our behalf
(see Basic Animations).

We can add some sound by adding one line to the tap object method:

function button:tap(event)
	 local r = math.random(0, 255)
	 local g = math.random(0, 255)
	 local b = math.random(0, 255)

	 textObject:setTextColor(r, g, b)
	 media.playEventSound("beep.caf")
end

button:addEventListener("tap", button)

Here we are using the media library which provides multimedia support.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 13

Projects

Assets (Building Blocks)

An app consists of several building blocks also known as the assets of the application:

• Source code: all code is written in the Lua scripting language. Most of the standard Lua
library APIs are available for your use. In addition there are APIs offered by Ansca that allow
you to quickly and easily create graphically rich and interactive applications. Your main Lua
application code is executed from a "le called main.lua, but additional code may be placed
in external Lua code "les.

• Non-code assets: usually these are multimedia assets such as image (e.g. PNG or JPEG) "les,
sound "les, and video "les that are referenced in your application code. You are free to use
your favorite creative tools to create these assets.

Starting a Project

Creating projects are really simple. All you do is create an empty folder in which to put all asset
"les used by your application. This includes any external library "les that you wish to reference
from your main application "le, main.lua.

It is important that you only put "les that your application actually uses. You should not put
older versions of your main.lua "le or older versions of your multimedia assets. Also, you
should only place final production assets in this folder; you should not place the original native
"les produced by creative tools like Photoshop® (PSD) or Illustrator® (AI).

If you were to create a project called "MyProject", the directory structure would look like:

MyProject/
	 	 Icon.png
	 	 logo.png
	 	 main.lua
	 	 library.lua
	 	 library2.lua
	 	 photo.jpg
	 	 ...

Notice that the code and non-code assets (e.g. images) are in the same directory. There's also
an icon image that lives alongside all the assets. This icon "le should be a PNG that's 57x57
pixels.

For instructions on how to create your own external code libraries, see the Module section of
APIReference.pdf. Additionally, for example code that loads optional Corona libraries, see the
projects Button and Movieclip in the Sample Code directory of the Corona SDK.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 14

Building for Device

See DeviceBuildGuide.pdf (in the Documentation folder of the Corona SDK) for instructions
on how to build for your device or the iTunes App Store..

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 15

Sample Code

The SDK comes with sample code to help you get started:

GettingStarted

The following samples are no frills. They are bare bones to show you basic functionality:

• Animation1 shows how to create a bouncing ball animation using enterFrame events.

• Animation2 achieves same effect as Animation1 using table listeners.

• Animation3 shows 3 bouncing balls.

• AnimationTime1 is a time-based version of Animation1.

• EventSound creates a basic metronome app.

• FileDemo shows how to create a new "le and read an existing one.

• FollowMe shows how to make objects follow your "nger.

• HelloWorld shows how to draw text and an place an image on the screen.

• HelloWorldLocalized shows a translated “Hello World” depending on the language setting
of your computer/device. If your native language is missing, send us a translation!

• Orientation shows how to make an app respond to orientation changes.

• ReferencePoint1 shows how to rotate objects about an arbitrary reference point.

• ReferencePoint2 animates the objects in ReferencePoint1 as a collective group.

• SimpleNetworkDownload shows how to download an image from the internet.

• Timer shows how to achieve periodic calls.

• Transition1 demonstrates how do a simple fade out using the transition library.

• Transition2 demonstrates how do sequence multiple transitions.

Interface

• ActivityIndicator shows how to make a spinning activity indicator appear.

• Alert shows how to generate a native iPhone alert dialog.

• ButtonEvents shows various buttons and how easy it is to create them using an external
library.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 16

Device

The following samples are best viewed on the device:

• Camera demonstrates capturing the contents of the screen to a "le.

• CaptureToFile demonstrates capturing the contents of the screen to a "le.

• Compass shows how to use the magnetometer hardware of the device.

• GPS shows how to use the GPS capabilities of the device.

• StatusBar shows how to change the status bar style.

• WebOverlay shows how to use the web popup feature to display HTML as a transparent
overlay on top of animated Corona objects.

Graphics

• Clock shows a simple clock application.

• Fishies is a simple aquarium application.

• Movieclip shows how to create animated sprites using an external library.

Social

• Twitter shows how to login to your Twitter account and post a tweet.

Tutorial

• HelloWorld, HelloWorld2, and HelloWorld3 are used in the Tutorial Introduction.

• More coming!

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 17

Application Environment

Corona automatically adds key infrastructure into your application. This infrastructure handles
user input and displays content on the screen for you, but you are responsible for con"guring
how user input is handled and what content goes on the screen to create the application’s
user interface, behavior, and features.

This chapter will give you an overview of the application-level architecture.

Life Cycle

When your application launches, some initialization work is performed on your behalf. After
that, you have the opportunity to do initial setup such as de"ning functions, registering for
events, drawing images, etc. via the code in main.lua.

Once all setup is complete, the application enters an event/drawing loop in which events
trigger listeners in your code resulting in changes to the screen. See Drawing Cycle and Screen
Updates.

Keep in mind that the screen will not update until your initial setup is complete. Therefore, we
recommend that you lazily perform operations. See Minimize setup code.

Global Runtime Object

There is a global object called the Runtime object. This object’s principal job is to allow you to
register for events that have no speci"c target on screen such as "enterFrame" or "system"
events (see Event Basics).

Sandbox

For security reasons, your application runs in its own sandbox. That means, your application
has limited access to "les, memory, network resources, etc. Practically speaking, your "les (e.g.
application images, data, preferences) are stored in a location that no other application can
access. The paths to these "les are unique to your application. Corona provides you with API’s
to generate these paths (see Getting Paths to Files).

Application Events

Termination

When the user hits the Home button, they are quitting your application. By registering for the
applicationExit event (see Registering for Events), you have the opportunity to save any

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 18

unsaved data, save the state of the application, or perform cleanup such as deleting
temporary "les.

Interruptions

Your application can be interrupted by a variety of events. For example, your app may be
interrupted by a phone call, an SMS message, a calendar alert, or the device going to sleep.
Depending on the situation, the interruption may be temporary or may result in the
termination of your application. Temporary interruptions may affect the timing of your
application such as animations (see Lost or Missing Time). To handle these situations, you
should register for the applicationSuspend and applicationResume events.

Customization

Application Icon

The application icon should be a 57 x 57 PNG image "le. It should have the name Icon.png
and be located in the assets project folder.

MyProject/
	 Icon.png	 <---
	 main.lua
	 ...

Note: the iPhone App Store requires a 512 x 512 pixel version of the icon so you should always
create the icon in this higher-resolution.

Launch Image

When your application launches, you can choose to display a launch image before your
application "nishes initializing and is ready to display its interface. By using an image that
looks like the initial user interface, you can create the illusion of a faster application launch.
Alternatively, you can use this image for a “splash screen” displaying your application title or
company logo.

The launch image should be named Default.png and be the dimensions of the screen. It
should be located in the assets project folder.

MyProject/
	 Default.png	 <---
	 Icon.png
	 main.lua
	 ...

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 19

Event Handling

Events are the principal way in which you create interactive applications. They are a way of
triggering responses in your program. For example, you can turn any display object into an
interactive button. This $exibility is of the most unique things about the Corona SDK.

Global Events

Some events are broadcast, such as "enterFrame", "system", "orientation", etc. These
events are global in nature because they are not directed at any particular object. Rather, they
are broadcast to all interested listeners. The following is from the “Orientation” sample code. It
demonstrates how your app can respond to orientation changes:

local label = display.newText("portrait", 0, 0, nil, 30)
label:setTextColor(255,255,255)
label.x = display.stageWidth/2; label.y = display.stageHeight/2

local function onOrientationChange(event)
	 label.text = event.type -- change text to reflect current orientation
	 -- rotate text so it remains upright
	 local newAngle = label.rotation - event.delta
	 transition.to(label, { time=150, rotation=newAngle })

end

Runtime:addEventListener("orientation", onOrientationChange)

Local Events

Local events are sent to a single listener and are not broadcast.

Hit Events

When the user’s "nger touches the screen, a hit event is generated and dispatched to display
objects in the display hierarchy. By default, only those objects that intersect the hit location
(the location of the "nger on the screen) will be dispatched the event.

Propagation and Handling of Events

The events propagate through these objects in a particular order. By default, the "rst object in
the display hierarchy to receive the event is the top-most display object that intersects the hit
location; the next object is the next top-most object intersecting the hit location; and so on.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 20

Hit events propagate until they are handled. You can stop propagation to the next object (all
listeners of the current object still get the event) by telling the system that the event was
handled. This boils down to making a listener return true. If at least one of the listeners of the
current object returns true, event propagation ends; the next object will not get the event. If
the event is still unhandled at the end of this traversal, it is broadcast as a global event to the
global Runtime object.

Hit events are kind of a hybrid of local and global events. They are dispatched to a single
display object at a time, but any listener of that object will be dispatched the event if it
registered to receive that event.

Overriding Propagation with Focus

You can redirect future hit events to go to a speci"c display object by setting the focus.

Consider the situation of a rollover button. When a user presses on a button, the button should
change its appearance in some way to indicate that the user is touching the button. If the user
initially presses on the button and (without lifting) moves the "nger off the button, the button
should change to its original appearance.

This is very difficult to achieve using the default dispatch behavior and propagation rules of hit
events. When a display object representing a rollover button is initially “hit”, we would like
future events to go to it until the user lifts their "nger off the screen. The way to achieve this is
to set the focus on the display object. This instructs the system to deliver all future hit events to
that display object:

function button:touch(event)
	 local phase = event.phase
	 if "began" == phase then
	 	 -- Subsequent touch events will target button even if they are
	 	 -- outside the stageBounds of button
	 	 display.getCurrentStage():setFocus(self)
	 else
	 ...
	 end

	 return true
end

See the “Button” sample code for a complete example.

Listeners and Event Delivery

Listener can be either functions or a table (objects). In either case an event argument is always
passed to the listener. Each kind of event stores different properties available for use.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 21

Function Listener Table Listener

local function listener(event)
 print("Call #"..event.count)
end

timer.performWithDelay(
 1000, listener, 5)

local listener = {}
function listener:timer(event)
 print("Call #"..event.count)
end

timer.performWithDelay(
 1000, listener, 5)

Registering for Events

Events are registered with the target using the addEventListener object method. You pass
the string name of the event you want to be noti"ed of and the listener (function or table) that
should handle that event. Often, the listener will be the same as the object as in the examples
shown in Basic Interactivity.

Conventions

All events have a name property that corresponds to the name you use to register the event.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 22

Graphics and Drawing

All drawing that occurs on the screen is accomplished by creating DisplayObjects. Anything
that appears on the screen is an instance of a DisplayObject.

Creating Display Objects

You don't actually create these objects directly. Instead, you create special kinds of
DisplayObjects such as rectangles, circles, images, text, groups, etc.

These objects are all "rst-class citizens. You can change their position, rotate them, animate
them, turn them into buttons, etc.

All of these objects share common properties and methods that are described in the Display
Objects chapter of Corona SDK Language and API Reference.

All instances of DisplayObject can be treated like normal Lua tables. This means you can
add your own properties to the object as long as they don't con$ict with the names of
DisplayObject’s prede"ned properties and method. The one exception is that you cannot
index into a DisplayObject as an array using numerical indices.

Painter’s Model

DisplayObjects are drawn to the screen using the Painter's Model of drawing. The easiest way
to think of this is to imagine an actual painting. Here, the paint you apply at the beginning is
below the paint you apply later. Each successive brush stroke obscures the strokes that came
before.

You can think of a DisplayObject as analogous to a brush stroke. When you create a
DisplayObject, you are “painting” a new object over existing display objects. As you draw more
objects to the screen, the objects you draw last will obscure the ones you drew before.

Display Hierarchy

To manage the order in which DisplayObjects are drawn, DisplayObjects are organized in a
hierarchy. This hierarchy determines which objects appear above other objects.

Group Objects

The hierarchy is made possible by the existence of group objects. Group objects are a special
kind of DisplayObject that can have children. Group objects make it possible to organize your
drawing so that you can build relationships between objects.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 23

You can make any DisplayObject a child of a group. The children are organized in an array, so
the "rst child (index 1) is below the next child, and so on; the last child is always above all its
siblings. You insert objects into a group using the group:insert() object method and you
access the children by indexing into the group with integer indices (e.g. group[1]):

local square = display.newRect(0, 0, 100, 100)
local rect = display.newRect(0, 0, 100, 100)
local group = display.newGroup()
group:insert(square)
group:insert(rect)
assert((group[1] == square) and (group[2] == rect))

Stage Objects

Whenever you create a new object, it is implicitly added to a special group object that is at the
top of the hierarchy. This group object is called the stage object (note: we may rename this to
screen object). Every time you create a DisplayObject, it is implicitly added to the stage
object. By default, it will add that object at the end of the child array and thus appear above all
other child display objects.

Moving Objects Forward and Backward

Unlike in real painting, the ordering of display objects is not set in stone; you can change the
relative ordering of objects. The order in which a group object’s children are drawn is
determined by the ordering of the children array. Using the group:insert() object method,
you can reorder the position of an object within its parent group. Conceptually, you can think
of it as reinserting the object into the same parent group:

local square = display.newRect(0, 0, 100, 100)	 -- Red square is
square:setFillColor(255, 0, 0)	 	 	 	 	 	 -- at the bottom.
local circle = display.newCircle(80, 120, 50)	 -- Green circle is
circle:setFillColor(0, 255, 0)	 	 	 	 	 	 -- in the middle.
local rect = display.newRect(0, 0, 100, 100)		 -- Blue rect is
rect:setFillColor(0, 0, 255)	 	 	 	 	 	 -- at the top.

-- square,circle,rect all have same parent
local parent = square.parent

-- Move to top. Siblings at higher indices are above those at lower ones
parent:insert(square)		 -- same as parent:insert(parent.length, square)

-- Move below all other siblings
parent:insert(1, circle)

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 24

Drawing Cycle

The basic drawing model involves a cycle between executing Lua code and rendering objects
in the display tree of the current stage object. During this cycle, the screen is only updated
when objects in the display tree have changed. These changes occur by adding, removing, or
changing properties of the child DisplayObjects.

Currently, this cycle occurs 30 times a second. At the beginning of each cycle, an
"enterFrame" event is dispatched to any registered listeners in your Lua code. Once all
listeners have finished executing, the screen is updated.

Screen Updates

The screen never updates while a block of your Lua code is executing. Therefore, if you modify
a display object multiple times in a code block (e.g. the x position property), only the last
change (e.g. the "nal value of x) will be re$ected by the screen update.

Coordinates and Transforms

Coordinate spaces de"ne the location in which all drawing
occurs. The screen represents the base coordinate system
for drawing. All content must eventually be speci"ed
relative to the origin of the screen.

Often, it is unwieldy to describe everything in terms of
screen coordinates. Therefore, we introduce the concept of
local coordinates. Every display object operates in their own
local coordinate system. The heavy lifting of converting
between a display object's local coordinates and the screen
coordinates is done for you.

The process of translating between local coordinates and
screen coordinates is made possible by mathematical
transforms, or transforms, for short. Transforms convert
coordinates from one space to another.

Coordinates

A Cartesian coordinate system (also known as a rectangular coordinate system) is used to
de"ne position. Unlike standard Cartesian coordinates, the origin of the screen is located at
the top-left corner so that positive y-coordinate values extend downward (positive x-values
extend to the right as usual). All screen coordinates are de"ned relative to this origin.

Local coordinates allow you to manipulate geometric properties of a display object such as
rotation in a more intuitive fashion. Every display object has an origin relative to its parent's.
This origin essentially de"nes the position of the display object (relative to its parent). For

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 25

example, if variable r was a rectangle, then it's origin/local-position would be (r.xOrigin,
r.yOrigin).

Every object also has a local reference (or registration) point about which transformations such
as rotations occur. The reference point is de"ned by two numbers (in the case of the rectangle
r, these are r.xReference, r.yReference) which specify the location of the reference point
relative to the local origin. By default, the reference point is the same as the local origin, i.e. the
two numbers of the reference point are (0, 0).

Changing Position of Objects

To change the position of a display object, you can either manipulate the (xOrigin, yOrigin)
properties or the (x, y) properties — typically you do the latter because that’s the same point
about which scales and rotations occur.

The (xReference, yReference) properties do not affect the position of a display object.
Rather, they de"ne where the reference point will be located, as this location affects scaling
and rotation.

Transforms

Often, keeping track of transformations is a very error-prone and tricky business. This is
because the order in which geometric transformations occurs determines the "nal position.
For example, rotating an object and then scaling it (non-uniformly) will generate a different
result from scaling that object "rst and then rotating.

To simplify things, we de"ne an order of operations when transforming the object. These
operations are all relative to the reference point of the display object. In this way, you are free
to change the value of an object's position, rotation, and scale properties in any order you
please; the resulting transformation remains consistent.

This transformation is calculated by applying geometric operations in the following order:

1. Scale the display object about its reference point using (object.xScale,
object.yScale).

2. Rotate about the display object's reference point object.rotation degrees.

3. Move the object's origin (not its reference point) relative to the parent's by (object.x,
object.y) in local coordinates.

Note: the methods object:scale(), object:rotate(), and object:translate()
merely change the value of the underlying geometric properties. The order in which you call
them does not affect the "nal result, so you should not think of them as matrix
transformations.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 26

Object References

Because objects can be reordered in the hierarchy, using integer indices to access children of
groups is fragile. If you move a child above its sibling, all integer indices have to be updated. A
simple solution to this is to store child display objects as a property of the parent group. This
makes it easier to access those objects later.

Let’s consider a situation where we have images for the sun and the planets of our solar
system. We want to put them all under one group. In this example, we have a table listing all
the "les and we’ve created a group that we’ll store the image objects in.

local planetFiles = { sun="sun.png", mercury="mercury.png",
 venus="venus.png", earth="earth.png", mars="mars.png",
 jupiter="jupiter.png", saturn="saturn.png", neptune="neptune.png",
 uranus="uranus.png", pluto="pluto.png" }

local solarSystem = display.newGroup()

The next step is to create the image objects by iterating through the table planetFiles. We
use a special iterator ipairs which will return both the property name and the image
"lename stored in the property of planetFiles. We use the "lename to load the image; we
use the property name to assign a property in group so we can easily refer to it later in the
group without worrying about integer indices:

-- Loop through all the files, load the image, assign property in the group
for key,file in pairs(planetFiles) do
	 -- key will be "sun", "mercury", etc.
	 -- file will be "sun.png", "mercury.png", etc.
	 local planet = display.newImage(file)
 solarSystem:insert(planet)
 solarSystem[key] = planet
end

-- Afterwards:
-- solarSystem.sun will refer to the image object for "sun.png",
-- solarSystem.mercury will refer to the image object "mercury.png",
-- etc.

Keep in mind that if you want to remove one of these objects, you need to do two things. First,
you need to remove it from the display hierarchy. Second, you need to set the corresponding
property of the parent group to nil (see Variable References).

Removing Objects Properly

Because devices have limited resources, it is important to remove display objects from the
display hierarchy when you no longer use them. This helps overall system performance by
reducing memory consumption (especially images) and eliminates unnecessary drawing.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 27

When you create a display object, it is by default added to the root object of the display
hierarchy. This object is a special kind of group object known as the stage object.

To properly remove an object so it no longer renders on screen, you need to remove the
object explicitly from its parent. This removes the object from the display hierarchy:

image.parent:remove(image) -- remove image from hierarchy

However, this is not always sufficient to free the memory consumed by the image. To ensure
that the image object is garbage collected properly, we need to eliminate all variable
references to it as we will explain in the next section.

Variable References

Even though a display object has been removed from the hierarchy, there are situations in
which the object continues to exist. In our above example, the parent group solarSystem
stores references to the image objects for planets as properties. So even after removing an
image from the display hierarchy, we still need to ensure that solarSystem no longer refers
to the image. To do this, we set the property to nil (we call this nil’ing out the property).

local sun = solarSystem.sun
sun.parent:remove(sun) -- remove image from hierarchy
solarSystem.sun = nil -- remove sun as a property of solarSystem

Generally speaking, if you inserted the display object as a table element (e.g. as a property of
the table or as an array element), the display object will remain in existence even though it
does not display to screen (see Object References). You have to nil out the property as in the
above example.

Similarly, if other variables that point to the display object, the display object cannot be freed
as long as those objects continue to exist. For example, global variables are never freed so if a
global variable points to a display object, it will continue to exist even if it is not in the display
hierarchy. Here, you should also set the global variable to nil when you no longer need it.

Another subtlety is when a function refers to a local variable outside its scope:

local sun = solarSystem.sun

function dimSun()
	 sun.alpha = 0.5	 -- sun was declared outside the function block
end

In this case, there is still an outstanding reference to the image object inside this function.
Because this function is global, the image object must remain in existence. There are 2
solutions: make the function non-global (i.e. local) or change the function so that no variables
outside the function block are referenced. The latter is preferable and is also more general in
that it can be applied to any display object:

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 28

local sun = solarSystem.sun

function dim(object)
	 object.alpha = 0.5
end

Common Pitfalls

A common mistake is to improperly remove all objects from a group. This typically happens
when you write code that iterates through a group attempting to remove each child from the
display hierarchy. It’s natural to iterate through the group in the forward direction. However,
this can cause no end of confusion.

Continuing with our solar system example, consider the following where we attempt
(incorrectly) to remove all the objects from the solar system.

for i=1,solarSystem.numChildren do
	 local child = solarSystem[i]
	 child.parent:remove(child)
end

The problem here is that we are modifying a collection (i.e. the group’s children array) as we
iterate through that same collection. The result is we remove every other child. The easiest way
to illustrate this is with a parallel example involving an array of integers:

local array = {1,2,3,4,5,6,7,8,9,10}
print(table.concat(array, " ")) --> 1 2 3 4 5 6 7 8 9 10

for i=1,#array do
	 table.remove(array, i)
end

print(table.concat(array, " ")) --> 2 4 6 8 10

The "x is to iterate backwards.

for i=solarSystem.numChildren,1,-1 do
	 local child = solarSystem[i]
	 child.parent:remove(child)
end

Of course, this only ensures that all children have been removed from the display hierarchy;
you still have to set all references to these display objects to nil. So in this example, we were
merely trying to illustrate the highlight the pitfalls of iterating forward through the children of

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 29

a group and modifying the group at the same time. A good implementation would also set the
corresponding properties in solarSystem to nil for proper cleanup.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 30

Animation

One of the most powerful things about the Corona SDK is that any display object can be
animated. This is a testament to the $exible graphics model that Corona offers.

Animations allow you to create visually-rich and engaging user experiences. Animations are
accomplished by generating a sequence of frames that evolve smoothly from frame to frame.
The term tween (short for inbetween) is a term describing the process in which such
intermediate frames are generated. It is often used as shorthand to indicate that a property of
an object will change during the animation, as in tweening the position.

Basic Animations

The transition library allows you to easily create animations with only a single line of code
by allowing you to tween any property of a display object. For example, you can fadeout a
display object by tweening its alpha property (the alpha property transitions from 1.0 to 0).

The simplest way to do this is to use the transition.to method which takes a display object
as its "rst argument and a table containing the control parameters as its second. The control
parameters specify the duration of the animation, an optional delay for when to start the
animation, and the "nal values of properties for the display object. The intermediate values for
a property are determined by an easing function that is also speci"ed as a control parameter.
By default this is a linear function.

Below are some examples of how to animate a square (see Transition2 in the sample code):

local square = display.newRect(0, 0, 100, 100)
square:setFillColor(255,255,255)

local w,h = display.stageWidth, display.stageHeight

local square = display.newRect(0, 0, 100, 100)
square:setFillColor(255,255,255)

local w,h = display.stageWidth, display.stageHeight

-- (1) move square to bottom right corner; subtract half side-length
-- b/c the local origin is at the square’s center; fade out square
transition.to(square, { time=1500, alpha=0, x=(w-50), y=(h-50) })

-- (2) fade square back in after 2.5 seconds
transition.to(square, { time=500, delay=2500, alpha=1.0 })

In the "rst tween, notice that multiple values are changing: position and alpha. That’s because
in the control parameters we speci"ed the "nal values for the x, y, and alpha properties. For
each property speci"ed in the control parameters, the library looks at the current property
value and gradually changes that property to the "nal value over the time period speci"ed (1.5

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 31

seconds in this case). In the last tween, we use the delay control parameter to start the tween
after the initial tween’s fadeout is complete.

Note that the transition library operates in a time-based manner.

Animated Sprites (or “Movieclips”)

The external sprite library allows you to create animated sprites (sometimes called
“movieclips”) from sequences of images, which can then be moved around the screen using
exactly the same techniques as the simpler images discussed here. Functions are available to
play these animations in either the forward or reverse direction, and to jump to speci"ed
frames within the sequence.

For more information on animated sprites, see the sprite section of the API Reference. For a
sample project using the sprite library, see the Movieclip project in the Sample Code
directory of the Corona SDK.

Custom/Programmatic Animations

Often you will need to create your own custom animations that are not feasible using the
transition library. This is known as programmatic animation because you have to write
custom code to produce the animation sequence.

To create such animations, you need to change the contents of the screen over time. In some
environments, it’s natural to do this by changing properties of an object in loops such as a for
or while loop. However, in Corona, you cannot produce animations using such loops because
the screen is never updated within a block of code (see Screen Updates).

Instead, animations are produced by repeatedly calling listeners. These listeners modify the
display objects on the screen and then exit, thus allowing the screen to be updated. Such
listeners are known as "enterFrame" listeners because you register these listeners with the
"enterFrame" event.

In the drawing cycle, "enterFrame" events are dispatched before the screen is updated
providing your code the opportunity to modify the contents of the screen (see Drawing Cycle).
With "enterFrame" events, you can produce all kinds of animations. In fact, the transition
library is built on top of these events.

Below is an example of how to animate a bouncing ball:

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 32

local xdirection,ydirection = 1,1
local xpos,ypos = display.stageWidth*0.5,display.stageHeight*0.5
local circle = display.newCircle(xpos, ypos, 20);
circle:setFillColor(255,0,0,255);

local function animate(event)
	 xpos = xpos + (2.8 * xdirection);
	 ypos = ypos + (2.2 * ydirection);

	 if (xpos > display.stageWidth - 20 or xpos < 20) then
	 	 xdirection = xdirection * -1;
	 end
	 if (ypos > display.stageHeight - 20 or ypos < 20) then
	 	 ydirection = ydirection * -1;
	 end

	 circle:translate(xpos - circle.x, ypos - circle.y)
end

Runtime:addEventListener("enterFrame", animate);

The listener function animate is called every time an "enterFrame" event occurs. It is
responsible for changing the position of the ball and for ensuring that the ball “bounces” when
it hits the edge of the screen.

Because "enterFrame" events occur at the global level, you register listeners for those events
with the global Runtime object.

Frame Rate

The "enterFrame" event occurs at a regular interval known as the frame rate, so your
listeners will be called at the frame rate. However, if your listeners take too long to exit, then
the actual frame rate will be less than the desired frame rate.

Time-based vs Frame-based

In the above example, the animation was done in a frame-based manner. If the actual frame
rate were to slow down, the ball would appear to move more slowly as each and every
intermediate frame got rendered; no intermediate frames would be skipped. If you were trying
to synchronize the animation with sound, then this behavior would be extremely problematic.

The solution is time-based animation. We can transform the above example to be time-based
by calculating how much time had passed between calls to our listener and changing the
velocities appropriately. This would result in the following changes:

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 33

local xdirection,ydirection = 1,1
local xpos,ypos = display.stageWidth*0.5,display.stageHeight*0.5
local circle = display.newCircle(xpos, ypos, 20);
circle:setFillColor(255,0,0,255);

local tPrevious = system.getTimer()
local function animate(event)
	 local tDelta = event.time - tPrevious
	 tPrevious = event.time
	 xpos = xpos + (0.084*xdirection*tDelta);
	 ypos = ypos + (0.066*ydirection*tDelta);

	 if (xpos > display.stageWidth - 20 or xpos < 20) then
	 	 xdirection = xdirection * -1;
	 end
	 if (ypos > display.stageHeight - 20 or ypos < 20) then
	 	 ydirection = ydirection * -1;
	 end

	 circle:translate(xpos - circle.x, ypos - circle.y)
end

Runtime:addEventListener("enterFrame", animate);

Notice how we leverage the fact that the "enterFrame" event contains a property storing
the time in milliseconds. We compare that with the previous time to determine how far the
ball should travel. In addition, our old x,y velocities (2.8, 2.2) implicitly assumed that time was
measured in frames. The equivalent time in milliseconds is simply the frame rate. By default,
that’s set to 30 fps or 33.3 milliseconds. So we can multiply the old velocities by (30/1000) to
get the new time-based velocities.

Lost or Missing Time

The one problem to watch out for when doing time-based animation is that when the device
suspends the app, you need to account for the “lost” time. In the simulator, you can simulate a
suspend by using the keyboard shortcut ⌘↓ (command-down arrow) which corresponds to
the Suspend/Resume menu item under Hardware. (Note a known issue is that clicking on the
menu causes the app to pause as if it were suspended but doesn’t generate a suspend event).

In the bouncing ball animation, if the app is suspended for half a second, the ball may appear
to jump across the screen. In the example above, the solution is to adjust tPrevious to
account for this missing time:

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 34

-- Add the following below the code in the previous example

local tSuspend
local function onSuspendResume(event)
	 if "applicationSuspend" == event.type then
	 	 tSuspend = system.getTimer()
	 elseif "applicationResume" == event.type then
	 	 -- add missing time to tPrevious
	 	 tPrevious = tPrevious + (system.getTimer() - tSuspend)
	 end
end

Runtime:addEventListener("system", onSuspendResume);

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 35

User Interface

Buttons

The external ui library allows you to easily create buttons with normal and rollover states, by
assigning an image "le for each state. These buttons can optionally call custom functions on
both the “press” and “release” event.

For more information on creating buttons, see the ui section of the API Reference. For sample
projects using the external ui library, see the Button and Movieclip projects in the Sample
Code directory of the Corona SDK.

Alerts

The built-in native library allows you to launch native
iPhone alert dialogs with one or more buttons, and to
assign functions to the different buttons.

For more information on native alerts, see the native
section of the API Reference. For a sample project using
the native library, see the Alert project in the Sample
Code directory of the Corona SDK.

Text Input

(Forthcoming.)

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 36

Files

Applications are sandboxed (see Sandbox) meaning your "les (e.g. application images, data,
preferences) are stored in a location that no other application can access. Your "les will reside
in an app-speci"c directory for documents, resources, or temporary "les.

Getting Paths to Files

The paths to these "les are unique to your application. To create "le paths, you use the
system.pathForFile function. The following generates an absolute path to the icon "le for
your application using the application’s resource directory as the base directory for “Icon.png”:

local path = system.pathForFile("Icon.png", system.ResourceDirectory)

In general, your "les must reside in one of 3 possible base directories:

• system.DocumentsDirectory should be used for "les that need to persist between
application sessions.

• system.TemporaryDirectory is a temporary directory. Files written to this directory are
not guaranteed to exist in subsequent application sessions. They may or may not exist.

• system.ResourceDirectory is the directory where all application assets exist. Note: you
should never create, modify, or add "les to this directory (see Beware Security Violations).

Reading Files

To read "les, you use the io library provided by Lua. That library allows you to open "les given
an absolute path. Here’s an example of how to open a "le and read all its contents.

local path = system.pathForFile("data.txt", system.DocumentsDirectory)
local file = io.open(path, "r")
if file then -- nil if no file found
 local contents = file:read("*a")
 print("Contents of " .. path .. "\n" .. contents)
 io.close(file)
end

In this example, we assume that a "le “data.txt” exists in the documents directory. The function
io.open creates a "le object in which several object methods are available. We use the object
method read to obtain the contents of the "le as a string. At the end, we tell Lua that we are

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 37

done with the "le using the function io.open to close the "le. After that point, the variable
file is no longer a valid "le object.

Writing Files

To write "les, you follow many of the same steps as reading a "le. Instead of using a read
method, you write data (strings or numbers) to a "le. Here’s an example that builds on the
previous. It looks for the "le “data.txt” and reads it as before; however if it does not exist, then a
"le is created. Note the addition of hard line breaks (paragraph breaks) using the special \n
character.

local path = system.pathForFile("data.txt", system.DocumentsDirectory)

-- io.open opens a file at path. returns nil if no file found
local file = io.open(path, "r")
if file then
 -- read all contents of file into a string
 local contents = file:read("*a")
 print("Contents of " .. path .. "\n" .. contents)
 io.close(file)
else
 -- create file b/c it doesn't exist yet
 file = io.open(path, "w")
 local numbers = {1,2,3,4,5,6,7,8,9}
 file:write("Feed me data!\n", numbers[1], numbers[2], "\n")
 for _,v in ipairs(numbers) do file:write(v, " ") end
 file:write("\nNo more data\n")
 io.close(file)
end

Beware Security Violations

Every time your application is launched, the integrity of the application is veri"ed. It must be
the same as the original "le that was installed. If the integrity check fails, your app will not
launch. Therefore, you should never create, modify, or write to "les in the resources directory
(see system.ResourceDirectory).

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 38

Networking

Corona includes the latest version (v2.02) of the LuaSocket libraries. These Lua modules
implement common network protocols such as SMTP (sending e-mails), HTTP (WWW access)
and FTP (uploading and downloading "les). Also included are features to support MIME
(common encodings), URL manipulation and LTN12 (transferring and "ltering data).

Full LuaSocket documentation can be found here:

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/reference.html

Although these libraries are built into Corona, you need to use the Lua require syntax to
make the functions available to your code. See the Module section of the API Reference for
more information on how to use require.

For more information on network syntax, see the Network section of the API Reference.

Downloading Files

For a sample project that demonstrates remote image download over the network, see the
SimpleImageDownload project in the Sample Code directory of the Corona SDK.

Uploading Files

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 39

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/reference.html
http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/reference.html

Multimedia

Playing Sound

Event Sound

If you have short sounds that are roughly 1-3 seconds in duration, you should use the event
sound API’s. The following is an example of a metronome that plays a beep every second.

local soundID = media.newEventSound("beep.caf")
media.playEventSound(soundID)
local playBeep = function()
	 media.playEventSound(soundID)
end
timer.performWithDelay(1000, playBeep, 0)

The above example demonstrates best practices when you play the same event sound
repeatedly by only loading the event sound "le once using media.newEventSound to load
the sound "le. The result of that function is a sound id that is passed as an argument to
media.playEventSound in the playBeep function.

We could have just used media.playEventSound and always pass the sound "le, but that
would have been wasteful b/c every time playBeep was called, we would have to load the
same sound "le from disk.

Longer Sounds

For longer sounds, there are several functions that allow you to play, pause, and stop playing a
sound. However, you can only have one such long sound "le open at a time. These functions
all operate on the sound that is opened by the previous call to media.playSound.

media.playSound("song.mp3")

local stopAfter10Seconds = function()
	 media.playStopSound()
end
timer.performWithDelay(10000, stopAfter10Seconds)

Playing Video

Video playback relies on a device-speci"c popup media player. During video playback, the
media player interface takes over. An important thing to note is that media.playVideo is

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 40

asynchronous. Once the code block is exited, the application will be suspended until the video
playback is complete.

Therefore, if you want to be noti"ed of when the media player is exited (e.g. video "nished
playing or the user cancelled video playback), you should register a listener:

local onComplete = function(event)
 print("video session ended")
end
media.playVideo("Movie.m4v", true, onComplete)

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 41

Device Support

Discussions are forthcoming. See API Reference for a description of API’s available.

Orientation

See "orientation" events in the API Reference

Camera

See the media library in the API Reference

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 42

Common Design Tasks

Strategies to Avoid Globals

Overcoming Scoping Issues of Locals

Keeping Everything Local in Listeners

Pausing and Restarting Animations

If you have programmatic animations, you can pause and restart them. Here’s how you can
make a button start and stop an animation:

local logo = display.newImage("logo.png", 160, 240)
function logo:enterFrame(event)
	 -- do something like make the logo bounce around the edges of the screen
end

Runtime:addEventListener("enterFrame", logo);

function logo:tap(event)
	 if logo.isPaused then -- initially nil which is false anyways
	 	 Runtime:removeEventListener("enterFrame", self)
	 else
	 	 Runtime:addEventListener("enterFrame", self)
	 end
	 return true -- we handled the event so don’t propagate
end

logo:addEventListener("tap", logo)

Managing Screens

When you design your application interface, you’ll likely "nd yourself storyboarding in terms
of “screens” such as the splash screen, the home screen (sometimes called the main screen or
menu screen), or some other screen.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 43

Group objects are the perfect way to manage the content for each screen. In this way, you can
create a group for the splash screen, for the home screen, and for any other screen. You can
then leverage the transition library to create animated transitions (fades, sliding, etc) back
and forth between screens.

Saving Data on Application Exit

When you save data to a "le, you need to decide where you are going to put it, what the name
of the "le is, and what data you need to save.

Typically, you would put this in the documents directory of your application’s sandbox.

local path = system.pathForFile("data.txt", system.DocumentsDirectory)

-- io.open opens a file at path. returns nil if no file found
local file = io.open(path, "r")
if file then
 -- read all contents of file into a string
 local contents = file:read("*a")
 print("Contents of " .. path .. "\n" .. contents)
 io.close(file)
else
 -- create file b/c it doesn't exist yet
 file = io.open(path, "w")
 local numbers = {1,2,3,4,5,6,7,8,9}
 file:write("Feed me data!\n", numbers[1], numbers[2], "\n")
 for _,v in ipairs(numbers) do file:write(v, " ") end
 file:write("\nNo more data\n")
 io.close(file)
end

Restoring Data on Application Launch

In certain situations, it is desirable to resume where the user left off between launches. In order
to accomplish this, you need to register for the appropriate system events. Here is a skeleton of
how your app might be structured:

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 44

local function shouldResume()
	 -- return true or false depending on whether we need to resume
end

local function onSystemEvent(event)
	 if event.type == "applicationExit" then
	 	 -- save stuff to disk
	 elseif event.type == "applicationStart" then
	 	 if shouldResume()
	 	 	 -- load stuff off disk
	 	 else
	 	 	 -- start app up normally
	 	 end
	 end
end

Runtime:addEventListener("enterFrame", onSystemEvent);

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 45

Performance and Optimization

As you develop your application, you should always consider how your design choices affect
the performance of your application. Despite recent improvements in computing power,
mobile devices still face fundamental constraints in processing power, memory usage, and
battery life. Therefore, it's best to think of performance and optimization not only in achieving
faster response times but also in minimizing memory usage and maximizing battery life.

Using Memory Efficiently

Memory is a critical resource on mobile devices. Some devices may even forcibly quit your
application if you consume too much of it.

• Eliminate memory leaks. Your application should not have any memory leaks. Allowing
leaks to exist means your application may not have the memory it needs later. Although Lua
does automatic memory management, memory leaks can still occur in your code (see
Memory Allocation). For example, global variables are never considered garbage; it is up to
you to tell Lua that these variables are garbage by nil-ing them out (globalVar = nil). If
a global variable is a table, then any items in that table will not be considered garbage until
you nil them out (globalVar.item = nil).

• Make resource "les as small as possible. Resource "les used by your application typically
reside on the disk. They must be loaded into memory before they can be used. Images
should be made as small as possible. For example, it's often tempting to load multiple
fullscreen-sized images to create $ipbook-style animation, even though only elements in
the foreground change. In such situations, it's much better to separate the background into
a single fullscreen-sized images and animate the foreground using much smaller images.

• Load resources lazily. Avoid loading resource "les until they are actually needed.
Intuitively, prefetching resource "les might seem like a good way to save time; however, this
practice can actually back"re slowing down your application, because of the way a device
responds to low-memory situations. In addition, your application may never even use the
resource, making the prefetch a waste of time and memory.

• Remove objects from the display hierarchy. When a display object is created, it is
implicitly added to a display hierarchy. When you no longer need a display object, you
should remove it from the display hierarchy, especially then the objects contain images. This
makes the display object eligible for garbage collection. However, this is no guarantee that
the object will be considered garbage because other variables (not considered garbage)
might be referencing it. In this case, the object will not render to the screen, but its memory
isn't freed either.

Example

Below is an example of how a memory leak can occur. The code on the left removes the
rectangle from the display hierarchy once you tap on it, but the memory used by the rectangle
leaks because the variable rect that still refers to it. Because rect is a global variable, the

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 46

display object it references will not be freed even though the rectangle no longer renders on
the screen.

One way to "x this is to modify the removeOnTap function adding a line to nil-out the
reference (rect = nil). The problem with this approach is that you can no longer use this
function for other objects. Instead, you'd have to duplicate the code for that function differing
only in one line. A better solution is to simply make the global variable a local one, so you no
longer have to explicitly nil-out the reference. The code on the right "xes this by turning rect
into a local variable.

Bad (Memory Leak) Better

-- rect is a global variable
rect = display.newRect(0,0,10,10)
rect:setFillColor(255,255,255)

local function removeOnTap(event)
 local t = event.target
 local parent = t.parent

 -- remove from display hierarchy
 -- but var "rect" still exists
 -- so memory is never freed
 parent:remove(t)

 return true
end

rect:addEventListener(
 "tap", removeOnTap)

-- rect is a local variable
local rect =
 display.newRect(0,0,10,10)
rect:setFillColor(255,255,255)

local function removeOnTap(event)
 local t = event.target
 local parent = t.parent

 -- remove from display hierarchy
 parent:remove(t)

 return true
end

rect:addEventListener(
 "tap", removeOnTap)

Reducing Power Consumption

Battery life is inherently limited on mobile devices because of their small form factor. You can
help improve battery life by minimizing the use of the following features:

• Network traffic (Wi-Fi radios and baseband cell radios)

• GPS

• Accelerometers

• Disk accesses (reading/writing to "les)

You will inevitably use these features to create great user experiences. However, as you design
your application, make judicious use of these features, as everything you do impacts the
battery life of the user's device

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 47

Network

Of all the activities, network accesses consume the most power. You can minimize the impact
of network traffic by following these guidelines:

• Do not poll. Connect to external network servers only when needed.

• Minimize data size. Optimize the data you transmit so that it is as small as possible.

• Transmit in bursts. More power is consumed the longer the radio is actively transmitting
data. Therefore, transmit the data in bursts instead of spreading out the same data into
smaller transmission packets over time.

• If you access location data, stop collecting location update events as soon as you have the
data you need. Location data comes from using GPS, cell, and Wi-Fi networks, so the best
way to save power is to only collect location data when you need it.

CPU

Another way to minimize power consumption is to optimize the running time of your
application. Some rules of thumb include performing work lazily on an as needed basis rather
than doing work that ends up being unused.

Graphics

Group objects

If you are going to set the property (such as alpha) of a bunch of objects to the same value, it's
preferable to add the objects to a group and then modify the property of the group. It’s easier
for you to code and it optimizes your animation.

Another bene"t of organizing objects into groups is to organize your content into screens (see
Managing Screens).

Turn off animations for non-visible objects

It may sound obvious, but it’s often easy to overlook the fact that you may have animations
running that are invisible or that are offscreen.

For example, you might have a group that stores all objects for the main menu. In the main
menu group, there are several child objects that you animate (perhaps a bouncing ball or a
rotating gear) by registering a listener for "enterFrame" events to achieve custom animation.
When the user goes to another screen, you set the group to be invisible (isVisible set to
false). Unfortunately, the listener will continue to do calculations that don’t produce any
visible effect. See Pausing and Restarting Animations.

The solution is to remove the event listener when you change to a new screen and then re-
register the listener when you re-enter the menu screen.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 48

Optimize image sizes

Be careful when using large images, especially fullscreen images. They impact performance in
two ways:

First, they take more time to load so they can impact the responsiveness of your application.

Second, they use up a lot of memory; some devices will even force quit your application if too
much memory is consumed. Therefore, you should remove them from their parent group
when you no longer need them:

local image = display.newImage("image.png")

-- do stuff with image

image:getParent():remove(image)

Minimize setup code at startup time

When your application launches, your main.lua "le will typically contain a lot of setup code
to add images to the screen, set up listeners to respond to user events or frame events, etc. If
your setup code takes too long, your users will not see any screen updates because no screen
update can occur until after a code block has "nished executing.

Lua: Best Practices

Simple changes to your Lua code can yield tremendous bene"ts. Below are some examples of
ways to squeeze out extra performance in your Lua code using very simple coding changes:

Use locals (i.e. avoid global variables)

Avoid global variables. Period. In Lua, you will sacri"ce performance if you use global variables.
When in doubt, precede your variable declarations with local.

This applies even to functions. In Lua functions are variables too. In long loops, it’s better to
assign a function to a local variable. In the following example, the code on the left runs 30%
slower than the one on the right!

Global Local

for i = 1, 1000000 do
 local x = math.sin(i)
end

local sin = math.sin
for i = 1, 1000000 do
 local x = sin(i)
end

In some situations, you may not be able to cache a global variable in a pure local variable. For
example, inside a function, you may not be able to cache the function as a variable local to

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 49

that function. In this situation, you can use local variables that are outside the function scope,
i.e. external locals. External locals are not as fast as pure locals, but are faster than globals.

In the following example, we can optimize the code on the left by declaring sin once outside
function foo:

Global External local

function foo (x)
 for i = 1, 1000000 do
 x = x + math.sin(i)
 end
 return x
end

local sin = math.sin
function foo (x)
 for i = 1, 1000000 do
 x = x + sin(i)
 end
 return x
end

Again, the global version runs 30% slower.

Math: fast vs slow

Multiplication x*0.5 is faster than division x/2.

x*x is faster than x^2

Inserting objects into arrays

Short inline expressions can be faster than function calls. For example, when appending item
to an array t the following t[#t+1] = item is much faster than table.insert(t,
item).

Constant Folding

Constant folding is the process of simplifying constant expressions at compile time. For
example, the statement i=111+111 will be just as fast as i=222 because the compiler can
precalculate the value of that expression.

To take advantage of this, you need to be aware of when the compiler can do such calculations
and when it cannot. First, the compiler is not smart enough to know that values inside
variables are constant even if you consider those variables to be constant in your code.
Second, because of associativity rules, the ordering of constants matters. Lua considers a+b+c
to be equivalent to (a+b)+c. Therefore, the expression 1+2+x will be treated as (1+2)+x and
be optimized to 3+x, but x+1+2 will be treated as (x+1)+2 and thus not be optimized.

Cache properties in a local variable

If you are constantly accessing a property of a table but not changing its value, then you
should cache that value. There is a slight performance penalty to doing property lookups in a
table. For objects created by Ansca's api's — such as the display object returned by
display.newImage() — the penalty is even higher.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 50

Uncached Cached

function foo (o)
 local n = 0
 for i = 1, 1000000 do
 -- lookup o.x each time
 n = i + n * o.x
 end
 return n
end

function foo (o)
 -- cache o.x before the loop
 local x = o.x
 local n = 0
 for i = 1, 1000000 do
 n = i + n * x
 end
 return n
end

Tuning Your Code

.

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 51

Revision History

This table describes the changes to Applications Programming Guide:

Date Notes

2009-06-15 Initial draft

2009-11-28 Revised for product release 1.0

February 4, 2010 | © 2009 Ansca Inc. All Rights Reserved. 52

